337 research outputs found

    Altered dynamical integration/segregation balance during anesthesia-induced loss of consciousness

    Get PDF
    In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e., long-distance interactions between brain regions, and segregation, i.e., local processing in functionally specialized clusters. Altered states of consciousness have notably been characterized by a tipping of the integration/segregation balance away from this equilibrium. Historically, functional MRI (fMRI) has been the modality of choice for such investigations. However, fMRI does not enable characterization of the integration/segregation balance at sub-second temporal resolution. Here, we investigated global brain spatiotemporal patterns in electrocorticography (ECoG) data of a monkey (Macaca fuscata) under either ketamine or propofol general anesthesia. We first studied the effects of these anesthetics from the perspective of band-specific synchronization across the entire ECoG array, treating individual channels as oscillators. We further aimed to determine whether synchrony within spatially localized clusters of oscillators was differently affected by the drugs in comparison to synchronization over spatially distributed subsets of ECoG channels, thereby quantifying changes in integration/segregation balance on physiologically-relevant time scales. The findings reflect global brain dynamics characterized by a loss of long-range integration in multiple frequency bands under both ketamine and propofol anesthesia, most pronounced in the beta (13–30 Hz) and low-gamma bands (30–80 Hz), and with strongly preserved local synchrony in all bands

    Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain

    Get PDF
    PURPOSE: Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS: This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS: Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods

    Executive Functions and Prefrontal Cortex: A Matter of Persistence?

    Get PDF
    Executive function is thought to originates from the dynamics of frontal cortical networks. We examined the dynamic properties of the blood oxygen level dependent time-series measured with functional MRI (fMRI) within the prefrontal cortex (PFC) to test the hypothesis that temporally persistent neural activity underlies performance in three tasks of executive function. A numerical estimate of signal persistence, the Hurst exponent, postulated to represent the coherent firing of cortical networks, was determined and correlated with task performance. Increasing persistence in the lateral PFC was shown to correlate with improved performance during an n-back task. Conversely, we observed a correlation between persistence and increasing commission error – indicating a failure to inhibit a prepotent response – during a Go/No-Go task. We propose that persistence within the PFC reflects dynamic network formation and these findings underline the importance of frequency analysis of fMRI time-series in the study of executive functions

    Selection entropy: The information hidden within neuronal patterns

    Get PDF
    Boltzmann entropy is a measure of the hidden information contained within a system. In the context of neuroimaging, information can be hidden within the multiple brain states that cannot be distinguished within a single image. Here, we show that information can also be hidden within multiple indistinguishable selections of neuronal patterns between brain regions, as quantified by a novel metric that we term “selection entropy.” We show the ways in which selection entropy behaves in comparison with the Kullback-Leibler (KL) divergence (relative entropy). First, we use synthetic data sets to demonstrate that selection entropy is more sensitive to small changes in probability distributions compared with the KL divergence. Second, we show that selection entropy identifies a principal gradient between sensorimotor and transmodal brain regions more definitively than the KL divergence within resting-state functional magnetic resonance imaging time series. As such, we introduce selection entropy as an additional asset in the analysis of neuronal functional selectivity

    Self-similar correlation function in brain resting-state fMRI

    Full text link
    Adaptive behavior, cognition and emotion are the result of a bewildering variety of brain spatiotemporal activity patterns. An important problem in neuroscience is to understand the mechanism by which the human brain's 100 billion neurons and 100 trillion synapses manage to produce this large repertoire of cortical configurations in a flexible manner. In addition, it is recognized that temporal correlations across such configurations cannot be arbitrary, but they need to meet two conflicting demands: while diverse cortical areas should remain functionally segregated from each other, they must still perform as a collective, i.e., they are functionally integrated. Here, we investigate these large-scale dynamical properties by inspecting the character of the spatiotemporal correlations of brain resting-state activity. In physical systems, these correlations in space and time are captured by measuring the correlation coefficient between a signal recorded at two different points in space at two different times. We show that this two-point correlation function extracted from resting-state fMRI data exhibits self-similarity in space and time. In space, self-similarity is revealed by considering three successive spatial coarse-graining steps while in time it is revealed by the 1/f frequency behavior of the power spectrum. The uncovered dynamical self-similarity implies that the brain is spontaneously at a continuously changing (in space and time) intermediate state between two extremes, one of excessive cortical integration and the other of complete segregation. This dynamical property may be seen as an important marker of brain well-being both in health and disease.Comment: 14 pages 13 figures; published online before print September 2

    Spatial dependency between task positive and task negative networks

    Get PDF
    Functional neuroimaging reveals both relative increases (task-positive) and decreases (task-negative) in neural activation with many tasks. There are strong spatial similarities between many frequently reported task-negative brain networks, which are often termed the default mode network. The default mode network is typically assumed to be a spatially-fixed network; however, when defined by task-induced deactivation, its spatial distribution it varies depending on what specific task is being performed. Many studies have revealed a strong temporal relationship between task-positive and task-negative networks that are important for efficient cognitive functioning and here. Here, using data from four different cognitive tasks taken from two independent datasets, we test the hypothesis that there is also a fundamental spatial relationship between them. Specifically, it is hypothesized that the distance between task positive and negative-voxels is preserved despite different spatial patterns of activation and deactivation being evoked by different cognitive tasks. Here, we show that there is lower variability in the distance between task-positive and task-negative voxels across four different sensory, motor and cognitive tasks than would be expected by chance - implying that deactivation patterns are spatially dependent on activation patterns (and vice versa) and that both are modulated by specific task demands. We propose that this spatial relationship may be the macroscopic analogue of microscopic neuronal organization reported in sensory cortical systems, and we speculate why this spatial organization may be important for efficient sensorimotor and cognitive functioning.Comment: 16 pages, 4 figure

    Establishing brain states in neuroimaging data

    Get PDF
    The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets
    corecore